|
|
|
論文: (1) S. Wang*, Z.L. Li, M.X. Gao*, Y.F. Liu, H.G. Pan. Low-temperature and reversible hydrogen storage advances of light metal borohydrides. Renewable and Sustainable Energy Reviews, 2025, 208, 115000. (2) S. Wang*, C.J. Liu, Y.Y. Zhu*. Boosting Ambient Hydrogen Storage in Graphene via Structural and Functional Designs: A Review. Advanced Energy and Sustainability Research, 2025, 2400362. (3) S. Wang*, S.Q. Qu, Z.H. Liu, Y.Y. Zhu*, Z.L. Li, H.F. Liu, M.X. Gao*, H.G. Pan. In Situ Coupling Metallophilic Zn Sites and Interfacial LiCl Stabilizer to Achieve One-Step Reversible Hydrogen Storage in Li/Na Dual-Cation Borohydride. Chemical Engineering Journal, 2024, 488, 150889. (2024年深圳市科協(xié)第四屆優(yōu)秀科技學(xué)術(shù)論文) (4) C.J. Liu, Y.Y. Zhu*, A.Q. Zu, Y.K. Liu, Z.Y. Zhang, J,J Guo, C. Lian, M.E. Zou, S. Wang*. One-step synthesis of fluorine-functionalized intercalated graphene with adjustable layer spacing for both enhanced physical and chemical hydrogen storage. Materials Today Catalysis, 2024, 7, 100074. (5) Y.Y. Zhu*, L.M. Zeng, D.F. Wu, S. Wang*, Q. Zhou, R.H. Tang, G.C-P. Tsui, Z.-L. Xu, X.-S. Yang, K.C. Chan*. MgH2@Mg(BH4)2 Core?Shell-like Nanostructures: Synthesis, Hydrolysis Performance, and Promotion Mechanism. Nano Letters. 2024, 24, 3221?3230. (6) Y.Y. Zhu*, Q. Zhou, L.M. Zeng, D.F. Wu, R.H. Tang, S. Wang*. Rare-Earth Metal Trigger Enhanced Generation Kinetics of Lithium Borohydride. ACS Sustainable Chemistry & Engineering, 2024, 12, 10537?10543. (7) S. Wang, M.H. Wu, Y.Y. Zhu*, Z.L. Li, Y.X. Yang, Y.Z. Li, H.F. Liu, M.X. Gao*. Reactive destabilization and bidirectional catalyzation for reversible hydrogen storage of LiBH4 by novel waxberry-like nano-additive assembled from ultrafine Fe3O4 particles. Journal of Materials Science & Technology, 2024, 172, 63-71. (8) Z.L. Li, S. Wang (co-first), M.X. Gao*, K.C. Xian, Y. Shen, Y.X. Yang, P.Y. Gao, W.P. Sun, Y.F. Liu, H.G. Pan*. Catalyzed LiBH4 hydrogen storage system with in situ introduced Li3BO3 and V for enhanced dehydrogenation and hydrogenation kinetics as well as high cycling stability. ACS Applied Energy Materials, 2022, 5, 1226–1234. (9) S. Wang, M.X. Gao*, Z.H. Yao, K.C. Xian, M.H. Wu, Y.F. Liu, W.P. Sun, H.G. Pan*. High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH2, Journal of Magnesium and Alloys, 2022, 10, 3354-3366. (10) S. Wang, M.X. Gao*, Z.H. Yao, Y.S. Liu, M.H. Wu, Z.L. Li, Y.F. Liu, W.P. Sun, H.G. Pan*. A nanoconfined-LiBH4 system using a unique multifunctional porous scaffold of carbon wrapped ultrafine Fe3O4 skeleton for reversible hydrogen storage with high capacity. Chemical Engineering Journal, 2021, 428, 131056. (11) S. Wang, M.X. Gao*, K.C. Xian, Z.L. Li, Y. Shen, Z.H. Yao, Y.F. Liu, H.G. Pan. LiBH4 nanoconfined in porous hollow carbon nanospheres with high loading, low dehydrogenation temperature, superior kinetics, and favorable reversibility. ACS Applied Energy Materials, 2020, 3, 3928–3938. 專(zhuān)利: (1) 王舜, 曲珊青, 潘洪革, 高明霞. 一種雙金屬硼氫化物儲(chǔ)氫材料及其制備方法. 申請(qǐng)?zhí)枺?/span>2023116323717 (2) 王舜. 一種層間距可調(diào)的氟功能化插層石墨烯材料的一步法制備工藝及其產(chǎn)品和應(yīng)用. 申請(qǐng)?zhí)枺?/span>202410488754X
|