博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報告】研究生靈犀學(xué)術(shù)殿堂第193期之Arthur Gretton報告會通知

發(fā)布時間:2017年07月04日 來源:研工部 點(diǎn)擊數(shù):

全校師生:

我校定于2017年7月5日舉辦研究生靈犀學(xué)術(shù)殿堂——Arthur Gretton報告會,現(xiàn)將有關(guān)事項通知如下:

1.報告會簡介

報告人:Arthur Gretton

時 間:2017年7月5日(星期三) 上午9:00(開始時間)

地 點(diǎn): 長安校區(qū) 89院之間報告廳

主 題: Learning Interpretable Features to Compare Distributions

內(nèi)容簡介:I will present adaptive two-sample tests with optimized testing power and interpretable features. These will be based on the maximum mean discrepancy (MMD), a difference in the expectations of features under the two distributions being tested. Useful features are defined as being those which contribute a large divergence between distributions with high confidence. These interpretable tests can further be used in benchmarking and troubleshooting generative models, in a goodness-of-fit setting. For instance, we may detect subtle differences in the distribution of model outputs and real hand-written digits which humans are unable to find (for instance, small imbalances in the proportions of certain digits, or minor distortions that are implausible in normal handwriting).

2.歡迎各學(xué)院師生前來聽報告。報告會期間請關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

電子信息學(xué)院

2017年6月30日

報告人簡介

Associate Professor of the Gatsby Computational Neuroscience Unit from the part of the Centre for Computational Statistics and Machine Learning at UCL. His research focus on using kernel methods to reveal properties and relations in data. A first application is in measuring distances between probability distributions. These distances can be used to determine strength of dependence, for example in measuring how strongly two bodies of text in different languages are related; testing for similarities in two datasets, which can be used in attribute matching for databases (that is, automatically finding which fields of two databases correspond); and testing for conditional dependence, which is useful in detecting redundant variables that carry no additional predictive information, given the variables already observed. I am also working on applications of kernel methods to inference in graphical models, where the relations between variables are learned directly from training data.

巴黎百家乐地址| 大发888奖金| 百家乐软件骗人吗| bet365手机| 百家乐智能分析软| 六合彩资料大全| 澳门百家乐官网技巧| 百家乐五种路单规| 百家乐官网娱乐网备用网址| 千亿娱乐网| 真人百家乐官网游戏网| 皇冠现金网信誉| 真钱百家乐游戏排行| 百家乐官网三珠投注法| 百家乐足球| 百家乐官网玩法及细则| 太阳城亚州| 百家乐官网网络真人斗地主| 织金县| 现金网注册送彩金| 百家乐证据| 百家乐官网娱乐城博彩| 青鹏棋牌游戏大厅v3.0| 百家乐假在哪里| 百家乐官网游戏卡通| 百家乐官网规则技法| 360棋牌游戏大厅| 威尼斯人娱乐城返佣| 百家乐路子分| 百家乐加牌规则| 百家乐官网一邱大师打法| 百家乐官网开户最快的平台是哪家 | 百家乐官网桌子租| 网络百家乐官网大转轮| 百家乐官网分析博彩正网| 女神国际娱乐城| 博彩网站排名| 大发888娱乐城官方网站| 威尼斯人娱乐城会员开户| 月华百家乐的玩法技巧和规则 | 七胜百家乐官网娱乐网|