博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報告】研究生靈犀學(xué)術(shù)殿堂第193期之Arthur Gretton報告會通知

發(fā)布時間:2017年07月04日 來源:研工部 點(diǎn)擊數(shù):

全校師生:

我校定于2017年7月5日舉辦研究生靈犀學(xué)術(shù)殿堂——Arthur Gretton報告會,現(xiàn)將有關(guān)事項通知如下:

1.報告會簡介

報告人:Arthur Gretton

時 間:2017年7月5日(星期三) 上午9:00(開始時間)

地 點(diǎn): 長安校區(qū) 89院之間報告廳

主 題: Learning Interpretable Features to Compare Distributions

內(nèi)容簡介:I will present adaptive two-sample tests with optimized testing power and interpretable features. These will be based on the maximum mean discrepancy (MMD), a difference in the expectations of features under the two distributions being tested. Useful features are defined as being those which contribute a large divergence between distributions with high confidence. These interpretable tests can further be used in benchmarking and troubleshooting generative models, in a goodness-of-fit setting. For instance, we may detect subtle differences in the distribution of model outputs and real hand-written digits which humans are unable to find (for instance, small imbalances in the proportions of certain digits, or minor distortions that are implausible in normal handwriting).

2.歡迎各學(xué)院師生前來聽報告。報告會期間請關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

電子信息學(xué)院

2017年6月30日

報告人簡介

Associate Professor of the Gatsby Computational Neuroscience Unit from the part of the Centre for Computational Statistics and Machine Learning at UCL. His research focus on using kernel methods to reveal properties and relations in data. A first application is in measuring distances between probability distributions. These distances can be used to determine strength of dependence, for example in measuring how strongly two bodies of text in different languages are related; testing for similarities in two datasets, which can be used in attribute matching for databases (that is, automatically finding which fields of two databases correspond); and testing for conditional dependence, which is useful in detecting redundant variables that carry no additional predictive information, given the variables already observed. I am also working on applications of kernel methods to inference in graphical models, where the relations between variables are learned directly from training data.

大佬百家乐的玩法技巧和规则| 姜堰市| 可以玩百家乐官网的博彩网站| 网络百家乐金海岸| 百家乐已破解的书籍| 百家乐大赌场娱乐网规则| 同花顺百家乐娱乐城| 德州扑克 单机| 大发888分析| 百家乐官网投注网中国| 百家乐官网小钱赢钱| 7月24日风水| 百家乐官网方法技巧| 视频百家乐官网平台| 百家乐电器维修| 怎样看百家乐官网路纸| 大发888是什么东| 百家乐官网投注怎么样| 任我赢百家乐自动投注分析系统| 百家乐输钱的原因| 澳门赌场| 百家乐官网六手变化混合赢家打法| 新澳门百家乐娱乐城| 香港六合彩的开奖结果| 微信百家乐群规则大全| 百家乐官网赌场博彩赌场网| 老虎百家乐的玩法技巧和规则| 在线体育投注| 百家乐二号博彩正网| 奇博| 风水中的24山图| 微信百家乐群规则大全| 百家乐官网开户过的路纸| 亲朋棋牌手机版下载| 全讯网找新全讯网| 南部县| 百家乐免费赌博软件| 真人百家乐官网开户优惠| 尊龙线上娱乐| 顶级赌场连环夺宝| 太阳城百家乐口诀|