博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)講座】圖的Tutte多項式近期研究進展

發(fā)布時間:2017年10月16日 來源: 點擊數(shù):

報告題目:圖的Tutte多項式近期研究進展

報告人:葉永南教授

講座時間:2017年10月21日10:15-11:00

講座地點:友誼校區(qū)國際會議中心第一會議室

邀請人:張勝貴

承辦學(xué)院:理學(xué)院

聯(lián)系人:陸由

聯(lián)系電話:18202966680

報告簡介

William Tutte is one of the founders of the modern graph. For every undirected graph, Tutte defined a polynomial TG(x,y) in two variables which plays an important role in graph theory. In this talk, we will introduce some recent progresses in studies of the Tutte polynomial of a graph.

In Tutte's original definitions, non-negative integers, called internal and external activities with respect to the arbitrary enumeration, are defined for each spanning tree, they serve as the indices of x and y in the product that is the corresponding term of Tutte polynomial. First, We will introduce the conceptions of \sigma-cut tail and \sigma-cycle tail of T, which are generalizations of the conceptions of internally and externally activities, repectively, where \sigma is a sequence on the edge set of G and T is a spanning tree of G. We will also discuss the conceptions of proper Tutte mapping and deletion-contraction mapping.

In 2004, Postnikov and Shapiro introduced the concept of G-parking functions in the study of certain quotients of the polynomial ring. The Tutte polynomial of the graph G can be expressed in terms of statistics of G-parking functions. Let ? be a nonsingular M-matrix. We will introduce ?-parking functions which is a generalization of G-parking functions. We will introduce the abelian sandpile model and ?-recurrent configurations. There is a simple bijection between ?-parking functions and ?-recurrent configurations. We will discuss the geometry of sandpile model.

In general, the Tutte polynomial encodes information about subgraphs of G. For example, for a connected graph G, TG(1, 1) is the number of spanning trees of G, TG(2, 1) is the number of spanning forests of G, TG(1, 2) is the number of connected spanning subgraphs of G, TG(2, 2) is the number of spanning subgraphs of $G$. At last, we will discuss combinatorial interpretations of TG(1+p, -1)$ and TG(-1, 1).

報告人簡介

葉永南,臺灣中研院數(shù)學(xué)研究所研究員,1985年在美國紐約州立大學(xué)水牛城分部獲得博士學(xué)位,1987年7月返臺擔(dān)任中央研究院數(shù)學(xué)所副研究員,1991年1月晉升為研究員迄今。曾任加拿大魁北克大學(xué)蒙特婁分部資訊與數(shù)學(xué)系研究學(xué)者,麻省理工學(xué)院數(shù)學(xué)系、柏克萊加州大學(xué)統(tǒng)計系和澳洲Monash大學(xué)經(jīng)濟系訪問學(xué)者。學(xué)術(shù)研究除了數(shù)學(xué)之外,還涉及物理化學(xué)、統(tǒng)計、經(jīng)濟等多個領(lǐng)域。曾任臺灣數(shù)學(xué)推動中心主任,中研院數(shù)學(xué)所副所長,多次獲得臺灣中研院杰出研究獎,國科會杰出研究獎,國科會杰出研究計劃獎。已發(fā)表的論文有百余篇,組合論國際頂級雜志JCTA曾出版專門文章介紹Yeh-species,這個由葉永南研究員名字命名的領(lǐng)域,現(xiàn)在這一方向的研究仍然在不斷深入。目前,葉永南研究員的研究主要在圖的Tutte多項式及其相關(guān)組合結(jié)構(gòu)、計數(shù)組合學(xué)中uniform partitions等方面。

百家乐龙虎玩| 24分金| 百家乐官网试玩账户| 新葡京娱乐城网站| 嘉禾百家乐官网的玩法技巧和规则 | 大发扑克网站| 百家乐官网智能分析| 百家乐群必胜打朽法| 百家乐官网玩的技巧| 鑫鼎百家乐的玩法技巧和规则| 极速百家乐官网真人视讯| 大发888促销代码| 發中發百家乐官网的玩法技巧和规则 | 百家乐官网真人游戏棋牌| 邯郸百家乐园怎么样| 赢真钱的棋牌游戏| 百家乐3珠路法| 实战百家乐官网的玩法技巧和规则| 皇冠网现金网| 91百家乐的玩法技巧和规则| 川宜百家乐官网破解版| 澳门百家乐如何算牌| 网上百家乐官网洗码技巧| 百家乐下注几多| 百家乐官网专家赢钱打法| bet365里面的21点玩不得| 百家乐娱乐网备用网址| 百家乐也能赢钱么| 百家乐官网心术| 荆门市| 江永县| 太阳城网上版| 百家乐赌博娱乐城大全| 百家乐官网视频游戏视频| 百家乐游戏| 百家乐官网玩法介绍图片| 怀化市| 乐利来国际| 大发888娱乐软件| 太阳城77娱乐城| 喜达百家乐的玩法技巧和规则|