博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網(wǎng)站頁(yè)面已加載完成

由于您當(dāng)前的瀏覽器版本過(guò)低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗(yàn)。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁(yè) · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報(bào)告】研究生靈犀學(xué)術(shù)殿堂第264期之Markus Raschke報(bào)告會(huì)通知

發(fā)布時(shí)間:2017年12月14日 來(lái)源: 點(diǎn)擊數(shù):

全校師生:

我校定于2017年12月15日舉辦研究生靈犀學(xué)術(shù)殿堂——Markus Raschke教授報(bào)告會(huì),現(xiàn)將有關(guān)事項(xiàng)通知如下:

1.報(bào)告會(huì)簡(jiǎn)介

報(bào)告人:Markus Raschke教授

時(shí)間:2017年12月15日(星期五)上午

地點(diǎn):理學(xué)院學(xué)術(shù)報(bào)告廳

主題:Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

內(nèi)容簡(jiǎn)介:To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon/phonon interferometry as a probe of electronic structure and dynamics in 2D materials, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

2.歡迎各學(xué)院師生前來(lái)聽(tīng)報(bào)告。報(bào)告會(huì)期間請(qǐng)關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

理學(xué)院

2017年12月14日

 

報(bào)告人簡(jiǎn)介:

Markus Raschke is professor at the Department of Physics, Department of Chemistry, and JILA at the University of Colorado at Boulder. His research is on the development and application of new nano-scale nonlinear and ultrafast spectroscopy techniques to control the light-matter interaction on the nanoscale. These techniques allow for imaging structure and dynamics of molecular and correlated matter with nanometer spatial resolution. He received his PhD in 2000 from the Max-Planck Institute of Quantum Optics and the Technical University in Munich, Germany. Following research appointments at the University of California at Berkeley, and the Max-Born-Institute in Berlin, he became faculty member at the University of Washington in 2006, before moving with his group to Boulder in 2010. He is fellow of the Optical Society of America, the American Physical Society, and the American Association for the Advancement of Science. He is also an associate editor of the journal of Science Advances.

闲和庄百家乐娱乐城| 德州扑克入门| 百家乐官网三路秘诀| 全讯网五湖四海| 大发888游戏平台 df888ylc3403| 大发88846| 真人百家乐官网网站接口| 做生意门面朝向风水| 红树林百家乐的玩法技巧和规则 | 百家乐官网补牌规律| 百家乐官网任你博娱乐| 百家乐讲坛汉献| 优博娱乐城| 百家乐官网平注秘籍| 大发888娱乐城下载英皇国际| 任你博百家乐官网的玩法技巧和规则| 百家乐棋| 一筒百家乐官网的玩法技巧和规则 | 百家乐前四手下注之观点| 大发888.com| 百家乐对子计算方法| 天空娱乐城| 爱赢百家乐官网的玩法技巧和规则| 大发888国际游戏平台| 百家乐赌场玩法技巧| 博坊百家乐官网游戏| 太阳城百家乐168| 网上真钱赌博网站| 百家乐免费赌博软件| 百家乐官网体育nba| 百家乐乐翻天| 太阳百家乐官网3d博彩通| 老虎百家乐的玩法技巧和规则 | 大发888官网是多少| 送彩金百家乐官网平台| 全讯网3344555.com| 运城百家乐官网蓝盾| 大发888新网址| 全讯网娱乐353788| 筹码百家乐的玩法技巧和规则 | 百家乐官网有什么打法|