博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網站頁面已加載完成

由于您當前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當前位置: 首頁 · 學術交流 · 正文

學術交流

【學術報告】蘇黎世聯邦理工Andrew de Mello教授報告會通知

發布時間:2019年03月13日 來源:國際合作處 點擊數:

報告題目:微流控在超高通量生化分析中的應用

報告人:Andrew deMello

講座時間:2019年3月25日(周一)上午10:00

講座地點:國際會議中心第一會議室

邀請人:馬炳和教授

承辦學院:機電學院

聯系人:國際合作處武怡瓊

聯系電話:88491264

報告簡介

The past 25 years have seen considerable progress in the development of microfabricated systems for use in the chemical and biological sciences. Interest in microfluidic technology has driven by concomitant advances in the areas of genomics, proteomics, drug discovery, high-throughput screening and diagnostics, with a clearly defined need to perform rapid measurements on small sample volumes. At a basic level, microfluidic activities have been stimulated by the fact that physical processes can be more easily controlled when instrumental dimensions are reduced to the micron scale.1The relevance of such technology is significant and characterized by a range of features that accompany system miniaturization.

My lecture will discuss how the spontaneous formation of droplets in microfluidic systems can be exploited to perform a variety of complex analytical processesand why the marriage of such systems with optical spectroscopies provides a direct route to high-throughput and high-information content experimentation.

Droplet-based microfluidic systems allow the generation and manipulation of discrete droplets contained within an immiscible continuous phase.2They leverage immiscibility to create discrete volumes that reside and move within a continuous flow. Significantly, such segmented-flows allow for the production of monodisperse droplets at rates in excess of tens of KHz and independent control of each droplet in terms of size, position and chemical makeup. Moreover, the use of droplets in complex chemical and biological processing relies on the ability to perform a range of integrated, unit operations in high- throughput. Such operations include droplet generation, droplet merging/fusion, droplet sorting, droplet splitting, droplet dilution, droplet storage & droplet sampling.3-4I will provide examples of how droplet-based microfluidic systems can be used to perform a range of experiments including nanomaterial synthesis,5cell-based assays6and DNA amplification.

The considerable advantages that are afforded through the use of microfluidic systems are in large part made possible by system downscaling and the associated improvements in mass and thermal transfer. Nonetheless, handling and processing fluids with instantaneous volumes on the fL-nL scale represents a critical challenge for molecular detection, and still defines one of the key limitations in the use of a microfluidic system in a given application. To this end, I will also describe recent studies focused on the development of novel imaging flow cytometry platform that leverages the integration of inertial microfluidics with stroboscopic illumination8to allow for high-resolution imaging of cells at throughputs approaching 105cells/second.

報告人簡介

Andrew deMello,蘇黎世聯邦理工大學教授,化學和生物工程研究所所長,34歲任帝國理工正教授(至今仍保持最年輕的記錄),同時他還是Molecular Vision及DropTech的聯合創始人。deMello教授是微流控、分析化學等領域的知名科學家,在Nature、Science、Nature Chemistry等著名期刊上發表300余篇學術論文,獲得專利22項,受邀進行各類學術演講350余次,曾獲包括英國皇家化學學會等在內頒發的多項榮譽,任Analytical Chemistry, Advanced Materials Technologies, Chemistry World, The Journal of Flow Chemistry及Chem等期刊編委或主編。

砀山县| 威尼斯人娱乐场 新葡京| 百家乐官网任你博娱乐| 乐宝百家乐的玩法技巧和规则 | 蓝盾百家乐官网代理| 涂山百家乐的玩法技巧和规则| 百家乐官网现金平台排名| 玩百家乐官网的好处| 大发扑克官网| 百家乐官网路单破解软件| 百家乐路书| pc百家乐官网模拟游戏| 威尼斯人娱乐城线上赌博| 钱柜百家乐官网娱乐城| 同花顺国际娱乐城| 百家乐发牌靴遥控| 川宜百家乐官网分析软件| 永利百家乐娱乐平台| 百家乐官网微笑打法| 3U百家乐官网娱乐城| 新大发888娱乐城| 百家乐实战技术| 百家乐官网电话投注多少| bet365体育投注| 百家乐辅助分析软件| 网络百家乐官网必胜投注方法| 大发888娱乐城官网| 金赞百家乐现金网| 百家乐官网代打是真的吗| 大发888娱乐场 17| 网络百家乐游赌博| 太阳城百家乐官网的分数| 香港六合彩开码| 富易堂百家乐娱乐城| 澳门百家乐官网打法百家乐官网破解方法| 大发888大发888m摩卡游戏博彩官方下载| 24 山杨公斗首择日吉凶| 金城百家乐官网玩法平台| 北海市| 香港六合彩码报| 大发888怎么样|