博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網站頁面已加載完成

由于您當前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當前位置: 首頁 · 學術交流 · 正文

學術交流

【學術報告】香港中文大學計算機科學與工程系教授、IEEE/ACM Fellow John C.S. Lui學術報告

發布時間:2019年04月25日 來源:計算機學院 點擊數:

報告地點:西北工業大學長安校區計算機學院105會議室

報告時間:2019年5月6日上午10:30-11:30

報告人:香港中文大學John C.S. Lui教授, IEEE/ACM Fellow

邀請人:褚偉波副教授


報告題目:一類基于在線學習的網絡多路徑選擇方法

報告人簡介:

呂自成教授目前是香港中文大學計算機科學與工程系的李卓敏榮譽教授。他的研究方向聚焦于機器學習在網絡科學、網絡經濟學、網絡/系統安全、大規模分布式系統和性能測評理論方面的研究與應用。呂教授獲得了諸多教學與科研方面的獎項,包括香港中文大學校長模范教學獎和香港中文大學職員杰出研究獎(2011-2012)。他獲得了IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS 2006,SIMPLEX'14,ACM RecSys’17等重要國際會議的最佳學術論文獎以及ACM Mobihoc’18和ASONAM’17會議的最佳論文提名獎。他是IFIP WG 7.3,ACM,IEEE等多個重要協會的會士,Croucher基金會的高級研究專家,以及現任的ACM SIGMETRICS會議主席。呂教授的個人興趣包括電影和閱讀。

報告摘要:

過去十年間,接入計算機網絡的主機數量呈現出爆炸式增長。多種用于主機間數據傳輸的多路徑協議被相繼提出。然而,當前的數據傳輸多路徑協議由于忽略了網絡傳輸延遲、可用帶寬和數據丟包等隨機特性而使它們在應用上收到了極大的限制。另外,許多應用對網絡傳輸延遲、鏈路帶寬和丟包率等有一定要求。本報告將介紹一種基于網絡特性在線學習的多路徑選取框架,用于滿足不同應用對數據傳輸的需求。具體地,將介紹一類用于分別滿足最大傳輸延遲、網絡帶寬和丟包率約束的在線學習多路徑選取算法,并在理論上確保算法具有次線性的regret和violation兩個關鍵性能指標。


Biography:

John C.S. Lui is currently the Choh-Ming Li Professor of the Computer Science & Engineering Department at The Chinese University of Hong Kong. His current research interests are in machine learning on network sciences, network economics, network/system security (e.g., cloud security, mobile security, ...etc), large scale distributed systems and performance evaluation theory. John received various departmental teaching awards and the CUHK Vice-Chancellor's Exemplary Teaching Award, as well as the CUHK Faculty of Engineering Research Excellence Award (2011-2012). He is a co-recipient of the IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS 2006 and SIMPLEX'14 Best Paper Awards, ACM RecSys’17 best paper award and best paper runner-up in ACM Mobihoc’18 and ASONAM’17. He is an elected member of the IFIP WG 7.3, Fellow of ACM, Fellow of IEEE, Senior Research Fellow of the Croucher Foundation and is currently the chair of the ACM SIGMETRICS. His personal interests include films and general reading.

Title:

An Online Learning Multi-path Selection Framework for Multi-path Transmission Protocols

Abstract:

In the last decade, we have witnessed a tremendous growth of inter-connectivity among hosts in networks. Many new data transmission protocols have been developed to enable multi-path data transmissions between two hosts. However, the existing multi-path transmission protocol designs are limited as they neglect the stochastic nature of the metrics of the paths, e.g., latency, available bandwidth, and packet loss. Moreover, there are different design requirements in the applications, such as low latency, bandwidth throttling, and low loss rate in data delivery. In this talk, we propose a flexible online learning multi-path selection (OLMPS) framework to select multiple paths by learning the stochastic metrics of the paths and meeting the design requirements of the applications. Specifically, we design a set of novel online learning algorithms in the OLMPS framework for three different applications -- maxRTT constrained, bandwidth constrained, and loss rate constrained, multi-path selection, to select paths and satisfy the requirements. We prove that the algorithms can provide theoretical guarantees on both sublinear regret and sublinear violation in our OLMPS framework.

巴登娱乐城开户| 百家乐网站排名| 六合彩开奖记录| 百家乐官网15人专用桌布| 百家乐打水策略| 太阳城紫玉园| KK娱乐| 百家乐的打法技巧| 百家乐真人娱乐场| 华克山庄| 康莱德百家乐官网的玩法技巧和规则 | 真人百家乐网站接口| 大发888官方hgx2dafa888gwd | 唐人街百家乐官网的玩法技巧和规则 | 太阳城娱乐城官方网| 百家乐官网欧洲赔率| 百家乐官网路单免费下载| 九龙城区| 皇冠网百家乐赢钱| 哪个百家乐投注比较好| 网上百家乐官网是不是真的| 真人百家乐破解软件下载| 大发888怎么玩才赢| 百家乐官网玩的技巧| 大发888怎么了| 新世纪百家乐官网的玩法技巧和规则 | 百家乐tie| 豪杰百家乐官网现金网| 百家乐官网赢的秘诀| 运城百家乐的玩法技巧和规则| 圣淘沙百家乐官网游戏| 百家乐博百家乐的玩法技巧和规则 | 大发888黄金版下载| 百家乐官网园首选去澳| 三元玄空24山坐向开门| 百家乐官网路单显示程序| 威尼斯人娱乐网上百家乐| 缅甸百家乐官网赌博现场下载| 普兰县| 澳门百家乐赌技巧| 百家乐官网电影网|