全校師生:
我校定于2019年5月30日舉辦研究生靈犀學術殿堂——Piotr Breitkopf教授報告會,現將有關事項通知如下:
1.報告會簡介
報告人:Piotr Breitkopf教授
時間:2019年5月30日(星期四)上午10:30-12:10
地點:長安校區理學院數學系214會議室
報告題目:Model Order Reduction, Intrusive and Noninstrusive Approaches
模型降階/縮減模型,侵入式和非侵入式近似方法
內容簡介:
Industrial usage of numerical math-based tools such as the finite element method may in some applications become prohibitive due to the computational cost. This is particularly true in the automotive sector when optimizing the shape of a vehicle in crash situations. Model Order Reduction addresses this issue. Most model order reduction methods rely on the construction of a reduced basis to project the model on. The Proper Orthogonal Decomposition (POD) builds a modal basis from solution observations called snapshots. Data are in a first stage taken from full order model runs and then processed in a so-called off-line phase to give the reduced basis which is then used to build the reduced model. However, some difficulties arise in the POD. The data generated in the observation phase may become huge and hard to manipulate. Moreover, the computational cost for post-processing this data may as well explode. Another issue concerns the numerical integration schemes, i.e. the position of numerical integration points and the integration weights. Finally, the source code of the solver is not always available, requiring thus non-intrusive approaches.
在實際的工業應用中,力求高精度的數值計算(有限元法、有限體積法以及邊界元法等)來獲得精確的目標函數值和約束函數值,所需計算時間太長,而在優化過程中因需要多次這樣的迭代,往往讓計算量大到無法實現的地步。如何縮減理論的數值計算方法與實際復雜工程的巨大計算量的距離,成為不容忽視的一個難題,特別是在汽車行業,當優化車輛在碰撞情況下的形狀時尤其如此,目前已有一些模型降階方法來解決此類問題,但大多數模型降階方法依賴于所構造的降階基來對模型進行投影。利用正交分解(POD)從高精度的數值模型得到的快照(解的觀測值)信息來構建一個模態基,然后在降維后的模型中進行近似求解。然而,這種思路仍存在一些困難,這體現在這種縮減模型的構造要求高精度的數值測量信息量必須很大,但對于一些復雜的實際問題,往往很難得到這樣的大量信息;其次,對這些數據進行后處理的計算成本也可能會激增;此外,還會涉及到數值積分問題,即數值積分點的位置和積分權重的選取問題;最后,求解程序的源代碼并不總是可用的,因此需要采用非侵入式算法。本報告重點對這種近似方式進行詳細講解。
2.歡迎各學院師生前來聽報告。報告會期間請關閉手機或將手機調至靜音模式。
黨委學生工作部
理學院
2019年5月26日
報告人簡介
Piotr Breitkopf is the head of the Multidisciplinary Design Optimization team at Université de Technologie de Compiègne (UTC), France. His research fields involve: computational mechanics, reduced order modeling, design optimization and high performance computing. He has obtained his PhD from Polish Academy of Sciences in 1988, and habilitation (HDR) from UTC in 1998. Since 2010 he is Deputy Director of Roberval Laboratory, a joint CNRS-UTC research unit. He is member of the steering committee of Labex MS2T. In 2014 he was nominated Oversea Expert of the Center for Foreign Talents Introduction and Academic Exchange of Mechanical Behavior of Advanced Structures and Materials at NPU. Together with Professor Zhang Weihong he presides the joint French-Chinese research group "Virtual Prototyping and Design". He serves at various editorial boards, scientific councils and scientific associations. He has authored and co-authored more than 200 peer reviewed journal papers, book chapters and referenced conference papers.
Piotr Breitkopf法國科學院高級工程師,1988年獲波蘭科學院博士,1998年獲法國貢比涅技術大學教授資格,研究領域涉及計算力學、縮減模型、優化設計、高性能計算等。是法國貢比涅技術大學多學科優化團隊的帶頭人,2010年至今,擔任法國科學院與貢比涅技術大學聯合國家重點實驗室(Roberval)副主任,Labex MS2T指導委員會成員。2014年被評為西北工業大學國外人才引進和先進結構材料力學行為學術交流中心的國外專家,他與張衛紅教授共同主持中法聯合研究小組“虛擬樣機與設計”。是各種編輯委員會、科學委員會和科學協會任職。撰寫并合著200多篇同行評議的SCI期刊論文、書籍章節和參考會議論文。