博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網站頁面已加載完成

由于您當前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當前位置: 首頁 · 學術交流 · 正文

學術交流

【自動化學院南山(國際)講壇】報告通知(第六講)

發布時間:2019年11月01日 來源:自動化學院 點擊數:

報告題目:Learning Neural Networks for Domains with Few Labels

人:Joost van de Weijer教授

人:劉準釓教授

報告時間:2019年11月04日09:30AM

報告地點:長安校區自動化學院341會議室

報告簡介:Machine learning algorithms are data hungry and require a lot of labeled data to be trained. Exploitation of unlabeled data during training is thus a long-pursued objective of machine learning. In this talk, I will explore several methods which use unlabeled data to train deep neural networks. First, I will show how encoder-decoder architectures can be exploited to transfer labels from one domain to another (unlabeled) domain. Next, I will focus on how rankings can be used as a self-supervised proxy task to include unlabeled data during the training of deep neural networks. I will show applications in image quality assessment, crowd counting, and multi-modal data processing.

報告人簡歷

Dr. Joost van de Weijer is the leader of the Learning and Machine Perception Team (LAMP) and a senior scientist at the Computer Vision Center in Barcelona. He received his MSc (Delft University of Technology) in 1998 and his PhD (University of Amsterdam) in 2005. He was Marie Curie Intra-European fellow in INRIA Rhone-Alpes. He was awarded the Ramon y Cajal Research Fellowship. His research interest includes deep learning, computer vision, color imaging, object recognition, lifelong learning, active learning, color image processing. He has many publications in the top conferences CVPR, ECCV, ICCV, NIPS and the major journals PAMI, IJCV, and TIP.

广州百家乐赌场娱乐网规则| 百家乐最新破| 战神百家乐娱乐城| 大发888娱乐场下载samplingid112| 太阳城娱乐城网址| bet365体育在线下载| 百家乐官网5式直缆打法| 赌神网百家乐的玩法技巧和规则 | 江阴市| 网上的百家乐官网是真是假| 大赢家博彩| 百盛百家乐官网软件| 百家乐视频游戏盗号| 棋牌游戏评测网| 百家乐有赢钱公式吗| 钱百家乐官网取胜三步曲| 澳门百家乐路单| 浩博百家乐官网娱乐城| 百家乐咨询网址| 大发888游戏平台 送1688元礼金领取lrm | 百家乐官网平台开发| 百家乐下注的规律| 大发888娱乐城电话| 网上百家乐官网导航| 百家乐赢钱皇冠网| 篮球比分直播| 百家乐建材| 百家乐官网翻天| 兴山县| 电脑百家乐玩| 广州百家乐官网赌博机| 威尼斯人娱乐城老lm0| 粤港澳百家乐官网娱乐网| 实战百家乐的玩法技巧和规则| 查找百家乐官网群| 永利高足球平台| 克拉克百家乐的玩法技巧和规则 | 宝格丽娱乐城| 百家乐出千的高科技| 最新百家乐官网游戏机| 十三张百家乐的玩法技巧和规则|